Optimal Polynomial-Time Estimators: A Bayesian Notion of Approximation Algorithm
نویسنده
چکیده
The concept of an “approximation algorithm” is usually only applied to optimization problems, since in optimization problems the performance of the algorithm on any given input is a continuous parameter. We introduce a new concept of approximation applicable to decision problems and functions, inspired by Bayesian probability. From the perspective of a Bayesian reasoner with limited computational resources, the answer to a problem that cannot be solved exactly is uncertain and therefore should be described by a random variable. It thus should make sense to talk about the expected value of this random variable, an idea we formalize in the language of average-case complexity theory by introducing the concept of “optimal polynomialtime estimators.” We prove some existence theorems and completeness results, and show that optimal polynomial-time estimators exhibit many parallels with “classical” probability theory.
منابع مشابه
Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملEstimation of the Parameters of the Lomax Distribution using the EM Algorithm and Lindley Approximation
Estimation of statistical distribution parameter is one of the important subject of statistical inference. Due to the applications of Lomax distribution in business, economy, statistical science, queue theory, internet traffic modeling and so on, in this paper, the parameters of Lomax distribution under type II censored samples using maximum likelihood and Bayesian methods are estimated. Wherea...
متن کاملOn the properties of variational approximations of Gibbs posteriors
The PAC-Bayesian approach is a powerful set of techniques to derive non-asymptotic risk bounds for random estimators. The corresponding optimal distribution of estimators, usually called the Gibbs posterior, is unfortunately often intractable. One may sample from it using Markov chain Monte Carlo, but this is usually too slow for big datasets. We consider instead variational approximations of t...
متن کامل[hal-00923462, v1] Low-Complexity Channel Estimation in Large-Scale MIMO using Polynomial Expansion
This paper considers pilot-based channel estimation in large-scale multiple-input multiple-output (MIMO) communication systems, also known as “massive MIMO”. Unlike previous works on this topic, which mainly considered the impact of inter-cell disturbance due to pilot reuse (so-called pilot contamination), we are concerned with the computational complexity. The conventional minimum mean square ...
متن کاملA POLYNOMIAL TIME BRANCH AND BOUND ALGORITHM FOR THE SINGLE ITEM ECONOMIC LOT SIZING PROBLEM WITH ALL UNITS DISCOUNT AND RESALE
The purpose of this paper is to present a polynomial time algorithm which determines the lot sizes for purchase component in Material Requirement Planning (MRP) environments with deterministic time-phased demand with zero lead time. In this model, backlog is not permitted, the unit purchasing price is based on the all-units discount system and resale of the excess units is possible at the order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1608.04112 شماره
صفحات -
تاریخ انتشار 2016